whatisthis?

etc. 웹 브라우저 - google.com을 입력했을때 일어나는 일 본문

WEB STUDY/ETC.

etc. 웹 브라우저 - google.com을 입력했을때 일어나는 일

thisisyjin 2021. 8. 18. 10:53



what happens when type google

1. You type maps.google.com into the address bar of your browser.

2. The browser checks the cache for a DNS record to find the corresponding IP address of maps.google.com.

DNS(Domain Name System) is a database that maintains the name of the website (URL) and the particular IP address it links to. Every single URL on the internet has a unique IP address assigned to it. The IP address belongs to the computer which hosts the server of the website we are requesting to access. For example, www.google.com has an IP address of 209.85.227.104. So if you’d like, you can reach www.google.com by typing http://209.85.227.104 on your browser. DNS is a list of URLs, and their IP addresses, like how a phone book is a list of names and their corresponding phone numbers.


To find the DNS record, the browser checks four caches.

● First, it checks the browser cache. The browser maintains a repository of DNS records for a fixed duration for websites you have previously visited. So, it is the first place to run a DNS query.
● Second, the browser checks the OS cache. If it is not in the browser cache, the browser will make a system call (i.e., gethostname on Windows) to your underlying computer OS to fetch the record since the OS also maintains a cache of DNS records.
● Third, it checks the router cache. If it’s not on your computer, the browser will communicate with the router that maintains its’ own cache of DNS records.
● Fourth, it checks the ISP cache. If all steps fail, the browser will move on to the ISP. Your ISP maintains its’ own DNS server, which includes a cache of DNS records, which the browser would check with the last hope of finding your requested URL.


You may wonder why there are so many caches maintained at so many levels. Although our information being cached somewhere doesn’t make us feel very comfortable when it comes to privacy, caches are essential for regulating network traffic and improving data transfer times.

3. If the requested URL is not in the cache, ISP’s DNS server initiates a DNS query to find the IP address of the server that hosts maps.google.com.

As mentioned earlier, for my computer to connect with the server that hosts maps.google.com, I need the IP address of maps.google.com. The purpose of a DNS query is to search multiple DNS servers on the internet until it finds the correct IP address for the website. This type of search is called a recursive search since the search will repeatedly continue from a DNS server to a DNS server until it either finds the IP address we need or returns an error response saying it was unable to find it.
In this situation, we would call the ISP’s DNS server a DNS recursor whose responsibility is to find the proper IP address of the intended domain name by asking other DNS servers on the internet for an answer. The other DNS servers are called name servers since they perform a DNS search based on the domain architecture of the website domain name.
Without further confusing you, I’d like to use the following diagram to explain the domain architecture.

4. The browser initiates a TCP connection with the server.


To transfer data packets between your computer(client) and the server, it is important to have a TCP connection established. This connection is established using a process called the TCP/IP three-way handshake. This is a three-step process where the client and the server exchange SYN(synchronize) and ACK(acknowledge) messages to establish a connection.

1. The client machine sends a SYN packet to the server over the internet, asking if it is open for new connections.
2. If the server has open ports that can accept and initiate new connections, it’ll respond with an ACKnowledgment of the SYN packet using a SYN/ACK packet.
3. The client will receive the SYN/ACK packet from the server and will acknowledge it by sending an ACK packet.
Then a TCP connection is established for data transmission!

5. The browser sends an HTTP request to the webserver.

Once the TCP connection is established, it is time to start transferring data! The browser will send a GET request asking for maps.google.com web page. If you’re entering credentials or submitting a form, this could be a POST request. This request will also contain additional information such as browser identification (User-Agent header), types of requests that it will accept (Accept header), and connection headers asking it to keep the TCP connection alive for additional requests. It will also pass information taken from cookies the browser has in store for this domain.


6. The server handles the request and sends back a response.

The server contains a webserver (i.e., Apache, IIS) that receives the request from the browser and passes it to a request handler to read and generate a response. The request handler is a program (written in ASP.NET, PHP, Ruby, etc.) that reads the request, its’ headers, and cookies to check what is being requested and also update the information on the server if needed. Then it will assemble a response in a particular format (JSON, XML, HTML).

7. The server sends out an HTTP response.

The server response contains the web page you requested as well as the status code, compression type (Content-Encoding), how to cache the page (Cache-Control), any cookies to set, privacy information, etc.

● 1xx indicates an informational message only
● 2xx indicates success of some kind
● 3xx redirects the client to another URL
● 4xx indicates an error on the client’s part
● 5xx indicates an error on the server’s part
So, if you encountered an error, you can take a look at the HTTP response to check what type of status code you have received.

8. The browser displays the HTML content (for HTML responses, which is the most common).

The browser displays the HTML content in phases. First, it will render the bare bone HTML skeleton. Then it will check the HTML tags and send out GET requests for additional elements on the web page, such as images, CSS stylesheets, JavaScript files, etc. These static files are cached by the browser, so it doesn’t have to fetch them again the next time you visit the page. In the end, you’ll see maps.google.com appearing on your browser.